Rational experiment design for sequencing-based RNA structure mapping.
نویسندگان
چکیده
Structure mapping is a classic experimental approach for determining nucleic acid structure that has gained renewed interest in recent years following advances in chemistry, genomics, and informatics. The approach encompasses numerous techniques that use different means to introduce nucleotide-level modifications in a structure-dependent manner. Modifications are assayed via cDNA fragment analysis, using electrophoresis or next-generation sequencing (NGS). The recent advent of NGS has dramatically increased the throughput, multiplexing capacity, and scope of RNA structure mapping assays, thereby opening new possibilities for genome-scale, de novo, and in vivo studies. From an informatics standpoint, NGS is more informative than prior technologies by virtue of delivering direct molecular measurements in the form of digital sequence counts. Motivated by these new capabilities, we introduce a novel model-based in silico approach for quantitative design of large-scale multiplexed NGS structure mapping assays, which takes advantage of the direct and digital nature of NGS readouts. We use it to characterize the relationship between controllable experimental parameters and the precision of mapping measurements. Our results highlight the complexity of these dependencies and shed light on relevant tradeoffs and pitfalls, which can be difficult to discern by intuition alone. We demonstrate our approach by quantitatively assessing the robustness of SHAPE-Seq measurements, obtained by multiplexing SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) chemistry in conjunction with NGS. We then utilize it to elucidate design considerations in advanced genome-wide approaches for probing the transcriptome, which recently obtained in vivo information using dimethyl sulfate (DMS) chemistry.
منابع مشابه
Study design requirements for RNA sequencing-based breast cancer diagnostics
Sequencing-based molecular characterization of tumors provides information required for individualized cancer treatment. There are well-defined molecular subtypes of breast cancer that provide improved prognostication compared to routine biomarkers. However, molecular subtyping is not yet implemented in routine breast cancer care. Clinical translation is dependent on subtype prediction models p...
متن کاملA Graph-Based Clustering Approach to Identify Cell Populations in Single-Cell RNA Sequencing Data
Introduction: The emergence of single-cell RNA-sequencing (scRNA-seq) technology has provided new information about the structure of cells, and provided data with very high resolution of the expression of different genes for each cell at a single time. One of the main uses of scRNA-seq is data clustering based on expressed genes, which sometimes leads to the detection of rare cell populations. ...
متن کاملA Graph-Based Clustering Approach to Identify Cell Populations in Single-Cell RNA Sequencing Data
Introduction: The emergence of single-cell RNA-sequencing (scRNA-seq) technology has provided new information about the structure of cells, and provided data with very high resolution of the expression of different genes for each cell at a single time. One of the main uses of scRNA-seq is data clustering based on expressed genes, which sometimes leads to the detection of rare cell populations. ...
متن کاملAn RNA Mapping DataBase for curating RNA structure mapping experiments
SUMMARY We have established an RNA mapping database (RMDB) to enable structural, thermodynamic and kinetic comparisons across single-nucleotide-resolution RNA structure mapping experiments. The volume of structure mapping data has greatly increased since the development of high-throughput sequencing techniques, accelerated software pipelines and large-scale mutagenesis. For scientists wishing t...
متن کاملRNA-MATE: a recursive mapping strategy for high-throughput RNA-sequencing data
UNLABELLED Mapping of next-generation sequencing data derived from RNA samples (RNAseq) presents different genome mapping challenges than data derived from DNA. For example, tags that cross exon-junction boundaries will often not map to a reference genome, and the strand specificity of the data needs to be retained. Here we present RNA-MATE, a computational pipeline based on a recursive mapping...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- RNA
دوره 20 12 شماره
صفحات -
تاریخ انتشار 2014